## 2-(1,3-Benzothiazol-2-ylthio)-N-[2-hydroxy-5-(4-morpholinylsulfonyl)phenyl]acetamide
This is a complex chemical compound with a long and descriptive name. To understand its importance in research, let's break it down:
**Structure and Properties:**
* **Benzothiazole:** This is a heterocyclic aromatic ring system containing both benzene and thiazole rings.
* **Sulfonyl group:** The -SO2- group attached to the morpholine ring is a key feature, often associated with drug-like properties.
* **Acetamide:** This is a simple amide group linked to the benzothiazole ring.
* **Hydroxy and morpholino groups:** These functional groups can contribute to the compound's biological activity.
**Possible Applications and Importance in Research:**
Based on its structure, this compound could potentially be a **lead compound** for developing new drugs or other bioactive compounds. Here are some reasons why it's important for research:
* **Drug Discovery:** The presence of various functional groups, especially the sulfonyl and morpholino groups, suggests potential biological activity. This molecule could be a starting point for designing new drugs targeting specific biological pathways or disease targets.
* **Chemical Biology Research:** Its unique structure and potential biological activity could be utilized in various studies like:
* Investigating the interactions of this molecule with biological targets.
* Understanding the mechanisms of action of different drug candidates.
* Developing new probes or tools for studying biological processes.
* **Materials Science:** The molecule could possess interesting properties that make it useful in material science applications, such as:
* Organic electronics.
* Sensors and actuators.
* Luminescent materials.
**Important Note:** Without additional information about the specific research context and experimental data, it's impossible to definitively state the specific importance of this compound. Its importance depends heavily on the research question being addressed.
**To fully understand the significance of this compound, you would need more context about the research it is being used in. This might include:**
* **The research area:** Is it for drug discovery, chemical biology, or material science?
* **The specific target:** What biological target or process is being studied?
* **The experimental results:** What has been observed about the compound's activity, properties, and potential applications?
**To learn more about this compound and its importance, you can search for scientific publications that mention it or contact researchers working in relevant fields.**
ID Source | ID |
---|---|
PubMed CID | 3657896 |
CHEMBL ID | 1538321 |
CHEBI ID | 117046 |
Synonym |
---|
MLS000707559 , |
smr000241669 |
CHEBI:117046 |
2-(1,3-benzothiazol-2-ylsulfanyl)-n-(2-hydroxy-5-morpholin-4-ylsulfonylphenyl)acetamide |
HMS2553D23 |
cid_3657896 |
2-(1,3-benzothiazol-2-ylsulfanyl)-n-(5-morpholin-4-ylsulfonyl-2-oxidanyl-phenyl)ethanamide |
bdbm50365 |
2-(1,3-benzothiazol-2-ylthio)-n-[2-hydroxy-5-(4-morpholinylsulfonyl)phenyl]acetamide |
2-(1,3-benzothiazol-2-ylthio)-n-(2-hydroxy-5-morpholinosulfonyl-phenyl)acetamide |
CHEMBL1538321 |
Q27203670 |
Z56807408 |
Class | Description |
---|---|
sulfonamide | An amide of a sulfonic acid RS(=O)2NR'2. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 39.8107 | 0.0447 | 17.8581 | 100.0000 | AID485294 |
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 50.1187 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
acid sphingomyelinase | Homo sapiens (human) | Potency | 50.1187 | 14.1254 | 24.0613 | 39.8107 | AID504937 |
WRN | Homo sapiens (human) | Potency | 44.6684 | 0.1683 | 31.2583 | 100.0000 | AID651768 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 16.3601 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
hypothetical protein, conserved | Trypanosoma brucei | Potency | 19.9526 | 0.2239 | 11.2451 | 35.4813 | AID624173 |
regulator of G-protein signaling 4 | Homo sapiens (human) | Potency | 100.0000 | 0.5318 | 15.4358 | 37.6858 | AID504845 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 79.4328 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
P53 | Homo sapiens (human) | Potency | 63.0957 | 0.0731 | 9.6858 | 31.6228 | AID504706 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 15.8489 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
15-hydroxyprostaglandin dehydrogenase [NAD(+)] isoform 1 | Homo sapiens (human) | Potency | 12.5893 | 0.0018 | 15.6638 | 39.8107 | AID894 |
vitamin D3 receptor isoform VDRA | Homo sapiens (human) | Potency | 79.4328 | 0.3548 | 28.0659 | 89.1251 | AID504847 |
thyroid hormone receptor beta isoform a | Homo sapiens (human) | Potency | 0.5012 | 0.0100 | 39.5371 | 1,122.0200 | AID1479 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 10.6213 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 15.8489 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 125.8920 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
lamin isoform A-delta10 | Homo sapiens (human) | Potency | 10.0000 | 0.8913 | 12.0676 | 28.1838 | AID1487 |
TAR DNA-binding protein 43 | Homo sapiens (human) | Potency | 17.7828 | 1.7783 | 16.2081 | 35.4813 | AID652104 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Mcl-1 | Homo sapiens (human) | IC50 (µMol) | 1.7491 | 0.4000 | 7.1344 | 54.0000 | AID1417 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
RNA polymerase II cis-regulatory region sequence-specific DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
double-stranded DNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
RNA binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
mRNA 3'-UTR binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
lipid binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
identical protein binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
pre-mRNA intronic binding | TAR DNA-binding protein 43 | Homo sapiens (human) |
molecular condensate scaffold activity | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
intracellular non-membrane-bounded organelle | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleus | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
perichromatin fibrils | TAR DNA-binding protein 43 | Homo sapiens (human) |
mitochondrion | TAR DNA-binding protein 43 | Homo sapiens (human) |
cytoplasmic stress granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nuclear speck | TAR DNA-binding protein 43 | Homo sapiens (human) |
interchromatin granule | TAR DNA-binding protein 43 | Homo sapiens (human) |
nucleoplasm | TAR DNA-binding protein 43 | Homo sapiens (human) |
chromatin | TAR DNA-binding protein 43 | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |